Natural Gas Combustor as Hybrid Heating Source for Solar Thermal Loop (CSPCore-3)

Scientific Achievement:

Developed a natural-gas-fired combustor with near-zero NO_v emissions and low temperatures as a hybrid heating source for the solar thermal Brayton cycle using supercritical CO₂ as working fluid.

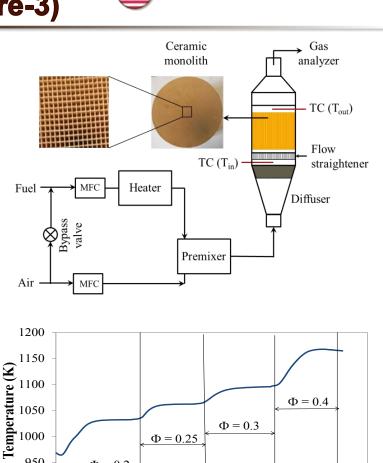
Significance and Impact:

A single-stage combustor using lean catalytic combustion of methane was developed for a thermal power output of about 35 kW. Stable, ultra-lean operation of the combustor was successfully demonstrated at methane-air equivalence ratios as low as 0.2.

Research Details:

SERI IUS

The highlights of the work are summarized below:


- Both ceramic and metallic monoliths with platinum catalyst were used to fabricate the single-stage catalytic combustor.
- Combustor exhaust temperatures are in the range of 1,060–1,170 K for methane-air equivalence ratios (ϕ) in the range of 0.2–0.4. These low temperatures are desirable from the viewpoint of material limitations of the heat exchanger.
- Measured NO_v emissions are in the range of 1–2 ppm for the • range of conditions studied.

Publication(s): Atanu Dolai, Ravikrishna, R. V. (2017) Experimental Studies on Lean Catalytic Combustion of Methane, 25th National Conference on IC Engines and Combustion (NCICEC), Suratkal, India, December 15–17, 2017.

1500

Time (sec)

1000

A joint India-U.S. research consortium

funded under the Joint Clean Energy Research & Development Center (JCERDC)

950

900

0

 $\Phi = 0.2$

500

2000

2500

3000