Optimizing the Position of Silver Nanoparticles in Plasmonic Solar Cells (PV-2)

Scientific Achievement:

Study of plasmonic effect of silver nanoparticles in pnheterojunction solar cells comprising Earth-abundant, nontoxic nanocrystals (CZTS and Cu@AgInS $\mathbf{2}^{\text {) }}$. Optimization of the position of the plasmonic nanoparticles for both direct and inverted structures.

Significance and Impact:

The appropriate location of silver nanoparticles in pnheterojunction solar cells was optimized by introducing them (1) in the p-layer, (2) in the n-layer, (3) in both the layers, and (4) at the interface between the layers of p - and n-type nanocrystals. Presence of the nanoparticles in the p-layer is superior compared to nanoparticles in the n-layer, with 1.48% (direct) and 0.80% (inverted) conversion efficiencies.
Research Details:

- Synthesis of CZTS and Cu@AglnS 2 nanoparticles by colloidal synthesis approach and their characterization.
- Fabrication of heterojunction solar cells with plasmonic nanoparticles with both direct ($p n$) and inverted ($n p$) structures.
- Characterization of the photovoltaic devices.
$p n$-Junctions:

- Ca/Al

(iii) both layers (iv) interface

Schematic of plasmonic devices with silver nanoparticles

JV profile of heterojunction cells.

Contact: Amlan J. Pal (sspajp@iacs.res.in)

(iii) both layers
(iv) interface

- CZTS nanoparticle (p-type)
- Cu@AglnS ${ }_{2}$ nanoparticle (n-type)

Publication: U. Dasgupta, S. K. Saha, A. J. Pal, Plasmonic effect in pn-junction solar cells based on layers of semiconductor nanocrystals: where to introduce metal nanoparticles?, Solar Energy Materials \& Solar Cells 136, 106-112 (2015). DOI: 10.1016/j.solmat.2015.01.004

Sandia National
Laboratories
RAND

