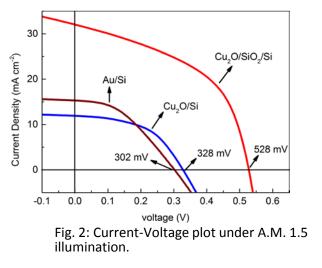
Hole-Selective Electron-Blocking Copper Oxide Contact for Silicon Solar Cells (PV-3)

Scientific Achievement:

A Cu₂O/Si heterojunction fabricated at room temperature using a facile sputtering process was demonstrated to work as a holeselective contact for silicon solar cells. Passivating the Cu₂O/Si interface leads to an open-circuit voltage (V_{oc}) of 528 mV, which is 200 mV higher than the state-of-the-art.

Significance and Impact:

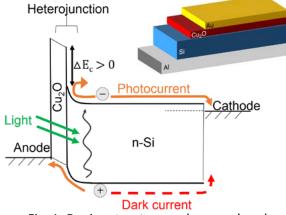
Metal-oxide/silicon carrier-selective heterojunctions are attractive because oxides are stable, non-toxic, and can be deposited at low temperatures at potentially low cost. Defects at the oxide/Si interface have been known to be the factor limiting the efficiency of heterojunction silicon solar cells. This work demonstrates a Cu₂O/Si hole-selective contact that shows one of the highest-reported values of V_{oc} among cells without back-surface passivation.


Research Details:

SERI IUS

- Cu₂O was deposited using reactive sputtering at room temperature.
- X-ray and ultraviolet (UV) photoelectron spectroscopy and UV-Visible spectroscopy were used to confirm the band-alignment between Cu₂O and Si that matches for a hole-selective contact.
- The Cu₂O/Si interface as deposited was found to have more than 10^{12} /cm² • defects, which were passivated using a tunneling SiO₂ layer. This led to a V_{oc} of 528 mV, which is 200 mV higher than unpassivated devices.

Publication(s): P. Ravindra, R. Mukherjee, and S. Avasthi. "Hole-selective electron-blocking copper oxide contact for silicon solar cells." IEEE Journal of Photovoltaics 7(5) (2017) 1278–1283. DOI: 10.1109/JPHOTOV.2017.2720619


Dark current Fig. 1: Device structure and energy band diagram for a hole-selective contact.

Contact(s): Sushobhan Avasthi (savasthi@iisc.ac.in)

RAND

