A joint India-U.S. research consortium funded under the *Joint Clean Energy Research & Development Center (JCERDC)*

Scientific Achievement:

We studied the annual field efficiency of a 1-m² and a 4-m²receiver with a range of heliostats.

Significance and Impact:

The results show that a 1-m² receiver yields significantly low efficiencies. But if a 4 m² receiver is used, efficiencies of about 60% can be achieved.

Research Details:

SERI IUS

- We carried out an analysis of field efficiencies with respect to tower height, and receiver and reflector dimensions.
 - 1. 1-m² Receiver : A 1-m² receiver will yield good efficiencies only with heliostats of smaller sizes. A field of 1-m² heliostats yields an efficiency of only about 12%. To achieve higher efficiencies, these heliostats must be segmented and canted to increase their effectiveness at redirecting light to the receiver.
 - 2. 4-m² Receiver: Similarly, a 4-m² receiver yields good efficiencies with a 1-m² heliostat without canting. Efficiencies of about 60% are achieved without canting.

S. DEPARTMENT O

• To get good field efficiencies, the receiver must be larger.

Efficiencies of 1-, 4-, 9-, 16-, $25-m^2$ heliostats with a $4-m^2$ receiver.

Contact: Tim Wendelin (Tim. Wendelin@nrel.gov)

