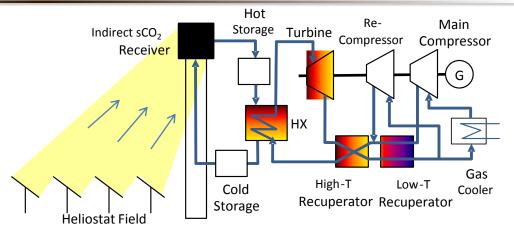
Technoeconomic Study of Solarized s-CO₂ Power Cycles (CSP-1)

Scientific Achievement:

Performed the first comprehensive technoeconomic analysis of alternative solar-driven supercritical CO₂ (s-CO₂) power cycles.

Significance and Impact:


Identified trade-offs in cost and performance among components in both concentrating solar power (CSP) and s-CO₂ power cycles to determine optimal configuration with lowest cost and greatest performance.

Research Details:

- Higher cycle efficiencies (nearly 50%) resulting from recuperation reduce required thermal input and costs of heliostat field and receiver.
- Lower ∆T across the primary heater (CSP source) resulting from recuperation increased required mass flow rate and costs of heat-transfer/storage media, but resulting cost increase was relatively small.
- Recuperated simple, recompression, and partial cooling s-CO₂ cycles yielded the lowest overall costs.

Publication: C. Ho, M. Carlson, P. Garg, and P. Kumar, "Cost and performance tradeoffs of alternative solar-driven supercritical CO₂ power cycles," *Proceedings of the ASME 2015 Power and Energy Conversion Conference*, San Diego, June 28–July 2, 2015.

Contact: Dr. Cliff Ho, ckho@sandia.gov

Solarized s-CO₂ recompression power cycle with thermal storage.

Table of solar and power block costs for alternative s-CO₂ power cycles. SCBC = Simple Closed Brayton Cycle; RCBC = Recompression Closed Brayton Cycle; CCBC = Cascaded Closed Brayton Cycle; CBI = Combination Bifurcation with Intercooler

	SCBC	Recuperated SCBC	RCBC	ССВС	СВІ
Concentrating Solar Costs (\$/kWe)	7,210	2,840	2,930	4,170	2,730
Power Block Costs (\$/kWe)	1,485	898	1,002	1,583	1,095
Total Costs (\$/kWe)	8,690	3,730	3,930	5,750	3,830

