Optimizing the Position of Silver Nanoparticles in Plasmonic Solar Cells (PV-2)

Scientific Achievement:
Study of plasmonic effect of silver nanoparticles in pn-heterojunction solar cells comprising Earth-abundant, non-toxic nanocrystals (CZTS and Cu@AgInS$_2$). Optimization of the position of the plasmonic nanoparticles for both direct and inverted structures.

Significance and Impact:
The appropriate location of silver nanoparticles in pn-heterojunction solar cells was optimized by introducing them (1) in the p-layer, (2) in the n-layer, (3) in both the layers, and (4) at the interface between the layers of p- and n-type nanocrystals. Presence of the nanoparticles in the p-layer is superior compared to nanoparticles in the n-layer, with 1.48% (direct) and 0.80% (inverted) conversion efficiencies.

Research Details:
- Synthesis of CZTS and Cu@AgInS$_2$ nanoparticles by colloidal synthesis approach and their characterization.
- Fabrication of heterojunction solar cells with plasmonic nanoparticles with both direct (pn) and inverted (np) structures.
- Characterization of the photovoltaic devices.

Contact: Amlan J. Pal (sspajp@iacs.res.in)